Monotone Hurwitz Numbers in Genus Zero

نویسنده

  • I. P. GOULDEN
چکیده

Hurwitz numbers count branched covers of the Riemann sphere with specified ramification data, or equivalently, transitive permutation factorizations in the symmetric group with specified cycle types. Monotone Hurwitz numbers count a restricted subset of the branched covers counted by the Hurwitz numbers, and have arisen in recent work on the the asymptotic expansion of the Harish-Chandra-Itzykson-Zuber integral. In this paper we begin a detailed study of monotone Hurwitz numbers. We prove two results that are reminiscent of those for classical Hurwitz numbers. The first is the monotone join-cut equation, a partial differential equation with initial conditions that characterizes the generating function for monotone Hurwitz numbers in arbitrary genus. The second is our main result, in which we give an explicit formula for monotone Hurwitz numbers in genus zero.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotone Hurwitz Numbers and the Hciz Integral Ii

Motivated by results for the HCIZ integral in Part I of this paper, we study the structure of monotone Hurwitz numbers, which are a desymmetrized version of classical Hurwitz numbers. We prove a number of results for monotone Hurwitz numbers and their generating series that are striking analogues of known results for the classical Hurwtiz numbers. These include explicit formulas for monotone Hu...

متن کامل

Monotone Hurwitz numbers and the HCIZ Integral

We prove that the free energy of the Harish-Chandra-Itzykson-Zuber matrix model admits an N → ∞ asymptotic expansion in powers of N −2 whose coefficients are generating functions for a desymmetrized version of the double Hurwitz numbers, which we call monotone double Hurwitz numbers. Thus, the HCIZ free energy expands as a generating function enumerating certain branched covers of the Riemann s...

متن کامل

Ramifications of Hurwitz theory, KP integrability and quantum curves

In this paper we revisit several recent results on monotone and strictly monotone Hurwitz numbers, providing new proofs. In particular, we use various versions of these numbers to discuss methods of derivation of quantum spectral curves from the point of view of KP integrability and derive new examples of quantum curves for the families of double Hurwitz numbers.

متن کامل

Toda Equations and Piecewise Polynomiality for Mixed Double Hurwitz Numbers

This article introduces mixed double Hurwitz numbers, which interpolate combinatorially between the classical double Hurwitz numbers studied by Okounkov and the monotone double Hurwitz numbers introduced recently by Goulden, Guay-Paquet and Novak. Generalizing a result of Okounkov, we prove that a certain generating series for the mixed double Hurwitz numbers solves the 2-Toda hierarchy of part...

متن کامل

Generating Functions of Bipartite Maps on Orientable Surfaces

We compute, for each genus g > 0, the generating function Lg ≡ Lg(t; p1, p2, . . . ) of (labelled) bipartite maps on the orientable surface of genus g, with control on all face degrees. We exhibit an explicit change of variables such that for each g, Lg is a rational function in the new variables, computable by an explicit recursion on the genus. The same holds for the generating function Fg of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012